Setup for the Geminids

With the Geminids peaking tonight and a clear sky after two nights of snow, I charged the camera battery and got a quick setup going to take some pictures of the sky.  As for any nigh sky photo, both lens stabilizer and auto-focus is set to OFF and focused manually at infinity. Then found a corner of the yard shielded from stray lights and planted the tripod, roughly aiming the camera 70deg up and pointing east (the constellation Gemini was rising at 10pm).

However at -15C outside, the old battery wouldn’t last very long.  I left it running for about 30 minutes, taking 20 seconds exposure at ISO 800 with a 17mm F4 lens.  The camera is now thawing (covered with frost after bringing it indoors) and will wait until tomorrow before checking the pictures out.

Setup for the 2017 Geminids

Setup for the 2017 Geminids

In the brief moments that I was outside I caught a 2-3 meteors and one really bright one (easily visual magnitude -4). So even living in the city, the Geminids are visible and accessible to all.  With my feet deep in snow I wasn’t dressed well enough to hang around in the cold wind to watch the show for long. So I hope the camera managed to capture a few.


Watching the Geminids

It’s that time of  the year again: the Geminid meteor shower. It is visible almost all the month of December, however the best and peak viewing, with up to 120 meteors an hour, is between December 12 and 15.  It should be a good year because we are heading towards a new Moon on December 18th, so no bright moon to ruin the show.

This meteor shower is called the Geminid because the radiant (apparent direction of travel in the sky) of the meteors is centered on the constellation Gemini.  However the source of the debris is not a comet like most other meteor showers, but an asteroid: 3200 Phaethon. The asteroid and orbit were discovered in 1983 and is too good of a match with the Geminids to be anything other than the source of the debris. However its makeup is closer to asteroid belt material, so it may very well be a 5km chunk from a larger asteroid, with all the associated debris.

To watch the Geminids, the best time is past midnight as the constellation will rise east around 10pm.  The higher it is in the sky the better. The Geminids do regularly create fireballs: bright displays that can exhibit colour and even leave a smokey trail, so observation even in light polluted city sky is possible.

Here are some tips for the observation:

  1. Dress to be warm.  You’ll be sitting still in the cold night. Nothing will get you indoors faster than the shivering knowing that warmth is only a few feet away.
  2. Lay down or recline in a chair.  Standing and looking straight up is very uncomfortable and quite the strain on the neck.
  3. Give yourself a good 15 minutes for your eyes to adjust to the darkness  If you give up after 2-3 minutes, your eyes are still adapting to night vision and will miss the fainter meteors.
  4. Find a spot away from sources of lights.  Of course heading out of the city is best, but if you can’t, just find a spot in your backyard without the glare of street lights and neighbors’ porch lights. That also means no electronic screens to ruin your night vision.

You can also setup a camera on a tripod to see if you capture some of the meteors. Grab a short focal length, remove auto-focus and go for a 10-20 second exposure setting.

Clear skies!

Does Earth Influence the Sun?

I recently came across an article in the french Science & vie magazine, where a reader asked if Earth influences the Sun. I found it rather interesting, and while I had my doubts I still wanted to know more about it.


The reader wasn’t the first to wonder if there was any interaction, various models and observations have been put forward since the late 1800s. We often read about two bodies interacting in space. The first exoplanet was discovered due to its gravitational influence on its star causing it to wobble. This type of gravitational influence works when two bodies have a mass within one or two orders of magnitude of each other.  But in the case of our Sun, it is 99.86% of the solar system’s mass, and most of the remaining is taken up by Jupiter and Saturn.  Therefore from a gravitational perspective Earth has no effect on the Sun.

But could the 11 year period in solar activity, characterized by the rise and fall of number of observed sun spots be caused by the planets? The exact source of that periodicity has yet to be clarified.  Well a team of researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) put out a paper in 2016 after demonstrating that every 11.07 years the planets Venus, Earth and Jupiter are aligned.  Coincidence?

They explained that while the effects are rather small, the repeated nudging could be enough to tip the Sun’s magnetic field instabilities one way or the other causing this 11 year solar cycle that we observe, much like an object entering into resonance.  In this case it’s the Sun’s magnetic field acting like a dynamo that would resonate due to the planet’s alignment every 11 years.

However many are skeptical about any real effect pointing that the source of the Sun’s magnetism comes from deep within, while the planet’s effect, if ever, would be limited to the Sun’s surface. But the crushing blow is when you look at fact that the solar cycle varies between 7 and 14 years, the number 11 just happens to be the average over the last 24 observed cycles.  Unfortunately the three planet’s alignment don’t vary by that amount.

In the end, the Sun is still king and does what it wants in this solar system, regardless what the planets say or do.

Red Dwarf Spaceship Spotting?

The big news this week is the first recordings and observations of an interstellar object.  Of the 750,000 asteroids and comets that have been cataloged up to now, every one of them originate from within our solar system. This object detected by the Pan-STARRS1 telescope and named A/2017 U1 or “Oumuamua”, a Hawaiian word for scout or messenger from the distant past, came from another part of our galaxy. Based on measurements made from multiple ground-based telescopes it is believed to be rather long and of a deep red color . Below is an artist’s rendering of this extra-solar visitor. While a comet would have generated some type of coma or tail travelling near the Sun, no such activity was recorded, hence it’s believed to be an asteroid-type object.

Artist’s impression of the interstellar asteroid `Oumuamua

Credit: ESO/M. Kornmesser






Measurements over multiple nights allowed to establish the trajectory, which clearly shows that it did not originate from the Oort cloud or other asteroid/comet rich fields surrounding the Sun. While the discovery was made only on an October 19 image, its closest approach to the Sun was September 9th.


Diagram showing the trajectory of A/2017 U1 (ESO/K. Meech, et al.)

Now I thing they got it all wrong.  What they picked-up was the Red Dwarf mining ship swinging by our neighborhood!


Red Dwarf mining vessel owned by the Jupiter Mining Corporation (BBC)


ESO Press Release

My photo in this week’s SkyNews

Today I got an e-mail from Gary that a photo of the Big Dipper that I had submitted a few months ago got selected for this week’s column on SkyNews. Couldn’t be happier. I wish all my weeks could start this way.

My photo featured on SkyNews

Astrophotography is a combination of equipment, experience, location/timing and luck. With this photo I just happen to hit everything right and was lucky.

Using the best equipment helps, but for this photo it was the simplest of setup: my very worn Canon Rebel XTi DSLR with a zoom lens set to 17mm F4 mounted on an old steel camera tripod my father used in the 60s. So nothing special, and within everyone’s reach.

OK, for the next part I had experience on my side. It allowed me to pick the right camera settings, but was also lucky as my photo viewing was limited to that small LCD screen on the camera. I had no laptop to fully explore and review the photos and make the necessary adjustments.  Even the focus was reviewed through the small camera LCD.  That night I only took 4 images with 20 second exposure crossing my fingers that I would have something worthwhile once back home.

And then there is the post-processing on the computer, which is a lot of trial-error. In image processing doing steps A + B will not give you the same results as performing B + A. We all have our “recipes” for what produces good results, but every photo ends up being a unique project. With this one, I knew there was good potential.

Finally there is the location and timing.  I was up in cottage country, away from city lights, and a clear sky. However there was a full moon rising, couldn’t wait too long as the sky would start to brighten. A Big Dipper low in the sky next to the trees framed everything very well.

Thanks Gary and SkyNews for selecting my photo. For all the experimentation that I do with the camera, once in a while I get everything right. I’m just happy someone noticed and said “Hey, that’s a great photo we could use.”

Color of the Moon

The Moon is white right? OK, OK… it only looks white because of the high contrast with the dark sky, it’s more grey.  What? No? You mean it has color?

From samples returned by the Apollo missions we know that two of the main minerals making up the lunar regolith is titanium oxide (TiO2) and iron oxide (FeO) based basalts.  While TiO2 is quite white and used in many household products from white toothpaste to white kitchen tiles, FeO is rust and closer to orange-brown (think Mars). On the Moon the result is a slightly blue-ish color in the areas with high TiO2, and more of a brown-red for the higher FeO and low TiO2 zones.

A normal image of the moon taken with DSRL, the different in hues is subtle as seen below.

Moon Natural Color (November 7, 2017) - Benoit Guertin

Moon Natural Color (November 7, 2017) – Benoit Guertin

But it can be exaggerated by playing with the color saturation, and you get the image below, where various hues of blue-grey, orange and brown become apparent. The sharp boundaries between colors are caused by the different mineral make-up of the lava flows during the early formation of the Moon. Common interpretation of the age of the lunar surface is that the blue-grey areas are “younger” than the orange-brown.

Moon with exaggerated colors

Moon with exaggerated colors

Who says you can’t pull scientific information with simple backyard astronomy gear? The same technique, but with narrow-band filters is used by NASA and other space and research agencies to catalog the make-up of the lunar surface.

So if you are planning lunar prospecting for future mining rights, all you need is a telescope and a DSLR.

Open Cluster NGC 6709

Not too far my previous post’s open cluster lies a smaller and younger NGC 6709.  Both were imaged on the same evening, but I only got 15 minute of integration due to advancing clouds.  However with these open clusters, I don’t think a greater number of frames would amount to much more details.

Open Cluster NGC 6709

Open Cluster NGC 6709

Skywatcher 80ED
Canon Rebel XTi
30 x 30sec (ISO 400)

Image is cropped and scaled 50%.