Open Cluster NGC 6633

Open star clusters are the galaxy’s youngest stars. They are created from the collapse of giant molecular gas clouds, often forming large and very hot stars shinning brightly in the blue-white part of the spectrum.  As they are rapidly consuming their fuel, they are also short-lived.  By ending as a super nova, they create the heavier elements beyond carbon that exists all around us.

Below is open star cluster NGC 6633, estimated to be 660 million years old (our solar system is 4.6 billion years old). The cluster is of a decent size covering just about the size of a full Moon in the night sky.  The brighter and whitish stars stand out against older and further stars in the background.

Open Star Cluster NGC 6633

Open Star Cluster NGC 6633

Younger star clusters such as the Pleiades (Messier 45) have yet to burn away their molecular gas clouds.  However there is no hint of glowing gas (nebula) with NGC 6633.

Skywatcher 80ED
Canon Rebel XTi
51x30sec (25.5 minutes) ISO 400

Advertisements

Cassiopeia – the W in the sky

Some constellations are easier to spot than others.  Cassiopeia with its distinctive W is visible year round in the northern hemisphere above the 34th parallel. In the image below it easily stands out from the fainter background stars.

Cassiopeia above the three line - Benoit Guertin

Cassiopeia above the three line – Benoit Guertin

The five stars drawing a W in the sky are all naked eye magnitude 3 and brighter stars, and in the image above I used a layering technique to increase the color and brightness of those stars to really make them stand out.

  1. Duplicate your base image, and set this layer to lighten only
  2. Apply a blur to the top layer(about 8-12 pixels)
  3. Increase the color saturation and brightness.  Play with the curves to brighten the bright stars, but not the background sky.
  4. Use a mask as required to filter out the bright foreground elements, such as light reflecting off a building roof-line in my image above.

Canon Rebel XTi
17mm f/4
4 x 20sec ISO800

 

The Milky Way (Sagittarius to Aquila)

The summer is ideal time to view our galaxy.  Because of Earth’s position with respect to the Milky Way, it runs north-south across the sky.  Anyone with a camera and tripod can easily capture the Milky Way if you are located in a dark area, away for city lights.  We were up north in the Malbaie, Québec area for vacation, so I took some time in the early night to observe and photograph the sky.  Unfortunately, a full Moon was present in early August and the sky would actually brighten past midnight.  The best time was around 11pm for any good viewing and astrophoto. Click on the photo for a high-resolution version.

Milky Way - Sagittarius (just above the trees) to Altair (bright star upper left)

Milky Way – Sagittarius (just above the trees) to Altair (bright star upper left)

Here is a quick run-down of a quick setup if you want to give it a try:

  1. Use as short a focal length as you can, 15mm to 25mm is good.
  2. Set the camera to MANUAL for everything, including the focus and disable any image stabilization. Due to the low light level the camera’s electronic won’t be able to automatically focus or stabilize, so disable them.  It’ll just seek and ruin your setup and photos.
  3. Set the ISO to a high value; 800 on older cameras and 3200 on newer models. Higher ISO will give you a brighter image, but with more noise.  You can test various ISO settings to see which one you are comfortable with.  If you are planning on taking many images and stacking them, you can run with a higher ISO as the stacking process will increase your signal-to-noise ratio.
  4. Set the aperture opening as large as possible. Larger openings bring in more light, but depending on the quality of the optics will distort the stars around the edges of the frame.  If you see that the stars stretch near the edges, simply stomp it down one or two stops. Trial and error is best to find the right setup.  If you’re not sure simply go with a large opening and you can later crop the image if the results isn’t pleasing.
  5. Set to capture in RAW, this is best for post-processing.
  6. Look on your lens and set the focus to infinity; this is where you’ll start. If you don’t know where infinity is, look at a faraway object and manually focus on it.
  7. Mount the camera on a tripod and aim at the desired part of the sky.
  8. If you have live preview, use it to fine-tune the focus to get the stars as small as possible. Don’t forget that you can often ZOOM in on the live preview screen.  If you don’t have live preview (like mine) simply take 3 short test photos (5 seconds each) adjusting the focus in the same direction between each photo. Review the three shots to see which one has the smallest stars and repeat this until you’ve achieved what you believe to be the best image.
  9. Set the exposure time to 20 seconds. With focal lengths in the 15-25mm range the stars will remain relatively round.
  10. Take as many photos as you wish.

You can experience with different setups (F-stop, ISO, focal and exposure lengths) and you’ll be able to review and compare later to see which gives you the best image.  That way the next time you’ll have your GO-TO setup for great shots.

The above was a stack of 4 images taken 17mm F/4, 20 seconds at ISO 800.

I also identified the constellations and some interesting objects in the above shot.

Objects in the Milky Way

Objects in the Milky Way

Comet 41P/Tuttle-Giacobini-Kresak

Periodic comet 41P/Tuttle-Giacobini-Kresak is currently a magnitude 8 object for telescopes and unlike many other current bright comets like C/2015 ER61 (PANSTARRS) and C/2017 E4 (Lovejoy) it is visible for a good portion of the night while the other two are only visible in the morning twilight for those like me in the northern hemisphere.

On April 13th comet 41P was in the constellation Drago, which is where I managed to photograph it.

Comet 41P/Tuttle-Giacobini-Kresak (13-Apr-2017) - Benoit Guertin

Comet 41P/Tuttle-Giacobini-Kresak (13-Apr-2017) – Benoit Guertin

Not much of a tail on this comet, and I’ve checked other photos taken with larger scopes and the result is also just a coma around the nucleus.

Because it is passing near Earth, its movement in the sky is quite noticeable frame-to-frame in the captured images. For the registration and stacking with comets, this is done by alignment on the comet and not the stars, hence the star trails in the above image. I performed another stacking, this time using the stars to align, and the comet’s movement becomes obvious. The displacement measures 2.6 arc-minutes in the 41 minutes that elapsed between first to last exposure.

UPDATE: Created a short video showing the comet’s movement

Distance traveled by the comet in 41 minutes

Distance traveled by the comet in 41 minutes

My setup was less than ideal, as the constellation was only visible from the front of my house.  Yes that is a lovely street-light shining right across the street.  Luckily the telescope was pointing a little to the right, and a rolled piece of cardboard help act as an dew-shield extension to block the glare.  But on the good side I had a nice solid concrete surface and got a very good polar alignment with 1 minutes exposures giving me nice round stars.  Hmmm, might explore this setup a little more often…

Setup in the garage to image comet in constellation Drago

Setup in the garage to image comet in constellation Drago

Telescope: SW80ED
Camera: Canon XTi (450D)
Exposure: 32 x 60sec ISO 800
DeepSkyStacker, IRIS, GIMP

Other comets of interest for 2017

Lower Orion Constellation

Just when you think you have a good “recipe” to process astronomy images taken with your gear, things don’t quite work out and you end up spending three evenings trying different settings, techniques and steps because you know there’s a better image waiting to be teased out.

M72 and Lower Orion Constellation

M72 and Lower Orion Constellation – Benoit Guertin

The image above (click for a full frame) is as much as I can stretch out from the lower half  of the Orion constellation and nebula with a 20 seconds ISO 800 exposure on 85mm F5.6 Canon lens from my light polluted backyard.

Below is the sky chart of the same area showing the famous Orion Nebula (blue and red box) and the Orion belt with the three bright stars Alnitak, Alnilam and Mintaka.  What is unfortunate is there are lots of interesting deep space nebula structures that glow in the hydrogen-alpha spectral lines of near infra-red, but all photographic cameras have IR filters to cut on the sensor those out.  That is why many modify the cameras to remove the filter, or get dedicated astro-imaging cameras.

Sky Chart - Lower Orion with nebula and open star clusters

Sky Chart – Lower Orion with nebula and open star clusters

Now, back to the main topic of trying to process this wide field image.  I had various issues with getting the background sky uniform, other times the color just disappeared and I was left with essentially a grey nebula; the distinctive red and greenish hue from the hydrogen and oxygen molecules was gone.  And there was the constant hassle of removing noise from the image as I was stretching it a fair bit.  I also had to be careful as I was using different software tools, and each don’t read/write the image files the same way.  And some formats would cause bad re-sampling or clipping, killing the dynamic range.

Below is a single 20 seconds exposure at ISO 800.  The Orion nebula (M72) is just barely visible over the light pollution.

orion_2017-02-27_original

Original image – high light position for 20 seconds exposure

The sky-flog (light pollution) is already half way into the light levels.  Yes, there are also utility lines in the frame.  As these will slightly “move” with every shot as as the equatorial mount tracked I figured I could make them numerically disappear.  More on that later…

Light levels of a 20 second exposure due to light pollution

Light levels of a 20 second exposure due to “sky fog”

The longer you expose, the more light enters the camera and fainter details can be captured.  However when the background level is already causing a peak mid-way, longer exposures won’t give you fainter details; it will simply give you a brighter light-polluted background.  So I needed to go with quantity of exposures to ideally reach at least 30 minutes of exposure time. Therefore programmed for 100 exposures.

Once the 100 exposures completed, I finished with dark, flat and offset frames to help with the processing.  So what were the final steps to reach the above final result?   As mentioned above, I used three different software tools, each for a specific set of tasks: DSS for registration and stacking, IRIS for color calibration and gradient removal and finally GIMP for levels and noise removal.

  1. Load the light, dark, flats and offset images in Deep Sky Stacker (DSS).
  2. Perform registration and stacking.  To get rid of the utility lines as well as any satellite or airplane tracks, the Median Kappa-Sigma method to stack yields the best results.  Essentially anything that falls out of the norm gets replaced with the norm.  So aircraft navigation lights which show up only on one frame of 100 gets replaced with the average of all the other frames.  That also meant the utility lines, which moved at every frame due to the mount tracking, would vanish in the final result.
  3. As my plan is to use IRIS to calibrate colors, where I can select a specific star for the calibration, I set the no background or RGB color calibration for DSS.
  4. The resulting file from DSS is saved in 16-bit TIF format (by default DSS saves in 32-bit, but that can’t be opened by IRIS).  I didn’t play around with the levels or curves in DSS.  That will be dealt later, a bit in IRIS, but mostly in GIMP.
  5. I use IRIS to perform background sky calibration to black by selecting the darkest part of the image and using the “black” command.  This will offset each RGB channel to read ZERO for the portion of the sky I selected.  The reason for this is the next steps work best when a black is truly ZERO.  While IRIS works in 16-bit, it’s actually -32,768 to + 32,768 for each RGB channel.  If your “black” has an intensity of -3404, the color calibration and scaling won’t be good.
  6. The next step requires you to find a yellow Sun-like star to perform color calibration.  As a white piece of paper under direct sunlight is “white”, finding a star with similar spectral color is best.  Sky chart software can help you with that (Carte du Ciel or C2A is what I use).  Once located and selected the “white” command will scale the RGB channels accordingly.
  7. The final step is to remove the remaining sky gradient, so that the background can be uniform.  Below is the image before using the sky gradient removal tool in IRIS.
  8. Image before removal of sky gradient in IRIS

    Image before removal of sky gradient in IRIS

  9. Once the sky gradient is removed, the tasks in IRIS is complete, save the file in BMP format (will be 16-bit)  for the next software: GIMP
  10. The first step in GIMP is to adjust light curves and levels.  This is done before any of the filers or layer techniques is performed.
  11. Then I played around with the saturation and Gaussian blur for noise reduction.  As you don’t always want the transformations to take place on the entire image, using layers is a must.
  12. For the final image above, I created two duplicate layers, where I could play with color saturation, blurring (to remove the background noise) and levels until I got the desired end result.  Masks are very helpful in selecting what portion of the image should be transparent to the other layers.  An example is I wanted a strong blur to blend away the digital image processing noise, but don’t want a final blurry night sky.

Comet 45P/Honda-Mrkos-Pajdusakova

It wasn’t easy but on Friday the weather cooperated and I was able to capture a glimpse of comet 45P/Honda-Mrkos-Pajdusakova.  That’s if you consider -10°C outside temperature to set-up a telescope and operate a laptop cooperation from Mother Nature.

In my previous post I gave myself a 2-day challenge to capture this comet as it was essentially the last few days at a decent magnitude 7 brightness before becoming non-observable as it swings around the sun over the coming weeks.  And when it returns to the northern latitude sky in mid-to-late February it will be dimer at magnitude 10.  In the image below, I labeled some of the brighter stars with their visual magnitude as reported by the Tycho-2 catalog.

Comet 45P/Honda-Mrkos-Pajdusakova

Comet 45P/Honda-Mrkos-Pajdusakova – around magnitude 7 on January 6th, 2017

I had a very small window of about 30 minutes to make any observation and photograph it.  The challenge started with setting up without polar alignment; the sky was still too bright to locate Polaris,  and instead relied on the position of Venus to align the mount.  As it was still twilight, I was limited to short exposures to keep the histogram on the left half on the camera and to make out a star from the background sky.  I actually started at ISO 400 with only 1 second exposure while adjusting the focus around Theta Cap (magnitude 4).  And as the minutes ticked by I was able to slowly increase my exposure as the twilight darkness permitted.  With neighboring trees, and rooftops coming into view I had to grab as many frames as possible. In the end I got 14 images with 6 seconds exposure at ISO 800 before calling it quits.

With such short exposures no chance of capturing any comet tail, but the green halo is unmistakable comet.

I hope to capture a few more comets this year.

Skywatcher 80ED
Canon XTi (450D)
14 x 6sec (ISO 800)
Registered and stacked with DeepSkyStacker.  Post-processing with GIMP.

December 25th – No Sunspots

The sun has been without sunspots for two days, but that is expected as we are heading to a minimum in the 11-year cycle.

Cycle 24 Sunspot Number

Cycle 24 Sunspot Number (NASA)

Nevertheless as it was a nice afternoon grabbed the scope and did some observation of the sun.  A little of a challenge to focus when there is no contrasting details to base yourself on.

December 25th 2016 - No Sunspots

December 25th 2016 – No Sunspots

Skywatcher 80ED
Canon XTi (450D) ISO 100 – 1/800sec
Thousand Oaks R-G Solar Film